Universal ratios in the 2D tricritical ising model

نویسندگان

  • Fioravanti
  • Mussardo
  • Simon
چکیده

We consider the universality class of the two-dimensional tricritical Ising model. The scaling form of the free energy leads to the definition of universal ratios of critical amplitudes which may have experimental relevance. We compute these universal ratios by a combined use of results coming from perturbed conformal field theory, integrable quantum field theory, and numerical methods.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ising tricriticality and the dilute A 3 model

Some universal amplitude ratios appropriate to the φ2,1 perturbation of the c = 7 10 minimal field theory, the subleading magnetic perturbation of the tricritical Ising model, are explicitly demonstrated in the dilute A3 model, in regime 1. AMS classification scheme numbers: 82B23, 81T40

متن کامل

Universal amplitude ratios of the renormalization group: two-dimensional tricritical Ising model.

The scaling form of the free energy near a critical point allows for the definition of various thermodynamical amplitudes and the determination of their dependence on the microscopic nonuniversal scales. Universal quantities can be obtained by considering special combinations of the amplitudes. Together with the critical exponents they characterize the universality classes and may be useful qua...

متن کامل

Tricritical transition in the classical XY model on Kagomé lattice under local anisotropy

Using mean-field theory and high resolution Monte Carlo simulation technique based on multi-histogram method, we have investigated the critical properties of an antiferromagnetic XY model on the 2D Kagomé lattice, with single ion easy-axes anisotropy. The mean-field theory predicts secondorder phase transition from disordered to all-in all-out state for any value of anisotropy for this model. H...

متن کامل

High order perturbation study of the frustrated quantum Ising chain

In this paper, using high order perturbative series expansion method, the critical exponents of the order parameter and susceptibility in transition from ferromagnetic to disordered phases for 1D quantum Ising model in transverse field, with ferromagnetic nearest neighbor and anti-ferromagnetic next to nearest neighbor interactions, are calculated. It is found that for small value of the frustr...

متن کامل

Constrained tricritical Blume-Capel model in three dimensions.

Using the Wolff and geometric cluster Monte Carlo methods, we investigate the tricritical Blume-Capel model in three dimensions. Since these simulations conserve the number of vacancies and thus effectively introduce a constraint, we generalize the Fisher renormalization for constrained critical behavior to tricritical systems. We observe that, indeed, the tricritical behavior is significantly ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Physical review letters

دوره 85 1  شماره 

صفحات  -

تاریخ انتشار 2000